Cho hàm số y = f(x) có đạo hàm trên R. Đồ thị hàm số y= f’(x) như hình vẽ bên dưới
Số điểm cực trị của hàm số y= g( x)= f( x- 2017) – 2018x+ 2019 là
A. 1
B. 2
C.3
D. 4
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ . Đồ thị hàm số y = f'(x) được cho như hình vẽ bên.
Số điểm cực trị của hàm số g(x) = f(x-2017) - 2018x + 2019 là:
A. 1.
B. 3.
C. 2.
D. 0.
Cho hàm số y = f ( x ) có đạo hàm trên R là f ' ( x ) = ( x - 2018 ) ( x - 2019 ) ( x - 2020 ) 4 . Hàm số đã cho có bao nhiêu điểm cực trị?
A. 2
B. 1
C. 4
D. 3
Cho hàm số y = f(x) có đạo hàm trên ℝ , thỏa mãn f(2) = f(-2) =2019. Hàm số y = f'(x) có đồ thị hàm số như hình vẽ. Hỏi hàm số g(x)= f x - 2019 2 (1;2). Ngịch biến trên khoảng nào dưới đây
A . 1 ; 2
B . - 2 ; 2
C . 2 ; + ∞
D . - 2 ; - 1
Cho hàm số y = f(x) có đạo hàm trên ℝ , thỏa mãn f(2) = f(-2) = 2019. Hàm số y = f'(x) có đồ thị như hình vẽ. Hỏi hàm số g x = f x - 2019 2 (1;2) nghịch biến trên khoảng nào dưới đây?
Đạo hàm của hàm số y = x + 2 x - 1 ln ( x + 2 ) là
A. 3 ln ( x + 2 ) ( x - 1 ) 2
B. x - 1 - 3 ln ( x + 2 ) ( x - 1 ) 2
C. 1 x - 1 ln ( x + 2 )
D. - 3 ln ( x + 2 ) ( x - 1 ) 2 + ln ( x + 2 ) x - 1
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( x - 2 ) ( x 2 - 3 ) ( x 4 - 9 ) . Số điểm cực trị của hàm số y = f ( x ) là
A. 3
B. 4
C. 2
D. 1
Cho hàm số y= f( x) có đạo hàm liên tục trên R, hàm số y= f’ (x-2) có đồ thị hàm số như hình bên. Số điểm cực trị của hàm số y= f( x) là :
A. 0
B. 2
C. 1
D. 3
Cho hàm số y= f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm số : y= f’(x) . Hàm số y= g(x) = f(x) + x đạt cực tiểu tại điểm
A. x= 0
B.x= 1
C. x= 2
D. Không có điểm cực tiểu
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3