Gọi O là tâm đa giác, giả sử A, B là hai đỉnh kề nhau của đa giác
Ta có A O B ^ = 360 n ° . Diện tích đa giác đều bằng.
S = n S O A B = n . 1 2 O A . O B . sin A O B ^ = 1 2 n R 2 . sin 360 n °
ĐÁP ÁN A
Gọi O là tâm đa giác, giả sử A, B là hai đỉnh kề nhau của đa giác
Ta có A O B ^ = 360 n ° . Diện tích đa giác đều bằng.
S = n S O A B = n . 1 2 O A . O B . sin A O B ^ = 1 2 n R 2 . sin 360 n °
ĐÁP ÁN A
Cho tam giác ABC có diện tích S, bán kính đường tròn ngoại tiếp là R thỏa mãn \(3S=2R^2\left(sin^3A+sin^3B+sin^3C\right)\).
CMR: tám giác ABC đều.
Cho tam giác ABC có diện tích S, bán kính đường tròn ngoại tiếp là R thỏa mãn \(3S=2R^2\left(sin^3A+sin^3B+sin^3C\right)\)
CMR: tam giác ABC đều.
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Tìm các giá trị lượng giác còn lại biết:
a) Cho sin \(x=-\dfrac{4}{5}\)và \(90^o< x< 180^o\)
b) Cho \(\sin x=\dfrac{\sqrt{3}}{2}\)và \(270^o< x< 360^o\)
c) Cho \(\cos x=-\dfrac{1}{3}\)và \(0^o< x< 90^o\)
Một đa giác đều có góc ở mỗi đỉnh bằng α và nội tiếp đường tròn bán kính R thì có độ dài mỗi cạnh là:
A.R sinα
B. 2 R c o s α 2
C. R cos α / 2
D. 2R sinα
Bài 4 : ( 3,5 điểm)
1) Cho đường tròn (O; R) và dây BC cố định, BC= R√3 A là điểm di động trên cung lớn BC (A khác B, C) sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại điểm H. Kẻ đường kính AF của đường tròn (O), AF cắt BC tại điểm N.
a) Chứng minh tứ giác BEDC là tứ giác nội tiếp
b) Chứng minh AE.AB = AD.AC
c) Gọi I là trung điểm của BC
Chứng minh rằng F, I, H thẳng hàng
2) Một hình trụ có diện tích xung quanh bằng 128π cm2, chiều cao bằng bán kính đáy. Tính thể tích của hình trụ đó
CMR: tam giác ABC là đều khi và chỉ khi \(108Rr=7p^2+27r^2\) , trong đó p,R,r tương ứng là nửa chu vi, bán kính đường tròn ngoại tiếp và nội tiếp tam giác ABC.
Cho tam giác ABC có p, R và r lần lượt là nửa chu vi, bán kính đường tròn ngoại tiếp và nội tiếp tam giác. Tìm GTNN của \(\dfrac{p^2}{r\left(4R+r\right)}\).
1. Cho tam giác ABC có a \(=4\sqrt{2}\), c \(=10\), B\(=45^0\). Tính b, cos C, S, R, sin A, ha