Cho một đa giác đều n cạnh có độ dài mỗi cạnh là a. Hãy tính bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp đa giác đều đó
Một đa giác đều n cạnh có tất cả 90 đường chéo. Gọi \(S_1,S_2\) lần lượt là diện tích đường tròn nội tiếp và ngoại tiếp của đa giác đều. Tỉ số \(\frac{S_1}{S_2}\) bằng bao nhiêu?
a) Vẽ tam giác đều ABC cạnh a = 3cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O; R).
Độ dài cạnh của tam giác đều nội tiếp đường tròn (O;R) bằng
A. R/2; B. (R 3 )/2;
C. R 3 D. Một đáp án khác.
Hãy chọn phương án đúng.
Mỗi câu sau đây đúng hay sai?
a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy
d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.
e) Giao điểm ba đường phân giác trong của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
g) Tứ giác có tổng độ dài các cặp cạnh đối nhau bằng nhau thì ngoại tiếp được đường tròn
h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn.
i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.
Trong đường tròn (O;R) cho một dây AB bằng cạnh hình vuông nội tiếp và dây BC bằng cạnh tam giác đều nội tiếp (điểm C và điểm A ở cùng một phía đối với BO).Tính các cạnh của tam giác ABC và đường cao AH của nó theo R
Số đường tròn nội tiếp của một đa giác đều là
A. 1
B. 2
C. 3
D. 0
Số đường tròn nội tiếp của một đa giác đều là
A. 1
B. 2
C. 3
D. 0
Cho tam giác ABC vuông tại A, có AB = 14, BC=50. Đường phân giác của góc ABC và đường trung trực của cạnh AC cắt nhau tại E
a. Cm tứ giác ABCE nội tiếp được trong một đường tròn. Xác định tâm O của đường tròn này.
b. Tính BE.
c. Vẽ đường kính EF của đường tròn (O). Tính diện tích phần hình tròn tâm (O) nằm ngoài đa giác ABFCE