Cũng không khó lắm.
Lưu ý \(S\ge0\)
Để tìm max\(S\): Ta có \(\sqrt{2}S=\sqrt{x+1}+\sqrt{y+1}\le\sqrt{2\left(x+1+y+1\right)}=\sqrt{2\left(S+2\right)}\).
Suy ra \(S\le\sqrt{S+2}\Leftrightarrow S^2\le S+2\Leftrightarrow S\le2\) (đẳng thức xảy ra khi \(x=y=1\)).
Để tìm min\(S\): Ta có \(\sqrt{2}S=\sqrt{x+1}+\sqrt{y+1}\ge\sqrt{x+y+2}=\sqrt{S+2}\).
Suy ra \(2S^2\ge S+2\Leftrightarrow S\ge\frac{1+\sqrt{17}}{4}\) (đẳng thức xảy ra khi \(x=-1,y=\frac{5+\sqrt{17}}{4}\))