tìm các số nguyên dương a;b;c;d thỏa mãn a+2b+3c=3d!+1.biết tồn tại các số nguyên tố p;q thỏa mãn a=(p+1)(2p+1)=(q+1)(q-1)2
Tồn tai hay không tồn tại các số nguyên tố a,b,c thỏa mãn các điều kiện sau: \(a^b+2011=c\)
giả sử p và q là hai số nguyên tố thỏa mãn đẳng thức p(p-1)=q(q2-1) (*)
a) cmr tồn tại số nguyên k để p-1=kq; q2-1=kp
b) tìm tất cả các số nguyên tố p, q thỏa mãn pt (*)
ai làm đc thì trình bày nha :D
C/M rằng với mọi số nguyên tố lẻ p đều ko tồn tại các số nguyên dương m;n thỏa mãn \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
tìm tất cả các số nguyên tố p,q sao cho tồn tại số tự nhiên m thỏa mãn: \(\frac{pq}{p+q}=\frac{m^2+1}{m+1}\)
tồn tại hay ko số nguyên x;y thỏa mãn : \(2016x^{2017}+2017y^{2018}=2019\)
Tồn tại hay không các số nguyên tố a,b,c thỏa mãn điều kiện \(a^b+2011=c\). Giúp mình với nha. Đây là câu 1 của đề thi HSG Toán 9 Huyện Yên Thành năm 2019-2020. Bạn nào có nguyên đáp án càng tốt , Thnks nhìu
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
tìm tất cả các số nguyên tó p q sao cho tồn tại số tự nhiên m thỏa mãn
qp/(p+q)=(m^2+1)(m+1)