Có hay không 2009 điểm trên mặt phẳng mà 3 điểm bất kì nào trong chúng đều tạo thành 1 tam giác có góc tù.
Có hay không 2017 điểm trên mặt phẳng sao cho bất kỳ 3 điểm trong chúng đều là đỉnh của 1 tam giác tù
Lm hộ mk nhoa ~~
Thứ 6 mk cần rồi
Mk sẽ tích cho :))))))
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,
2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm
3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương
4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá\(\frac{\sqrt{3}}{3}cm^2\) và có một góc nhỏ hơn 45o
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,
2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm
3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương
4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá√33 cm2 và có một góc nhỏ hơn 45o
1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)
2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.
CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín
3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.
CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a
cho n điểm trong mp sao cho ko có 3 điểm nào thẳng hàng và 3 điểm bất kỳ tạo thành 1 tam giác có diện tích \(\le\) 1.CMR n điểm đã cho thuộc 1 tam giác có diện tích \(\le\) 4
Trên mặt phẳng cho 17 điểm trong đó 3 điểm nào cũng nối được với nhau tạo thành 1 tam giác có cạnh được tô bởi một trong 3 màu xanh , đỏ hoặc vàng .
cmr tồn tại một tam giác có ba cạnh bằng nhau
Trong mặt phẳng cho sáu điểm, trong đó không có ba điểm nào thẳng hàng. Mỗi đoạn thẳng nối từng cặp điểm được bôi màu đỏ hoặc xanh. Chứng minh rằng tồn tại ba điểm trong số sáu điểm đã cho, sao cho chúng là ba đỉnh của một tam giác mà các cạnh của nó được bôi cùng một màu.
Trong mặt phẳng cho tập S gồm 8065 điểm đôi một phân biệt mà diện tích cả mỗi tam giác có 3 đỉnh thuộc tập S đều không lớn hơn 1 (quy ước nếu 3 điểm thẳng hàng thì diện tích của tam giác tạo bởi 3 điểm này bằng 0). Chứng minh rằng tồn tại một tam giác T nào đó có diện tích không lớn hơn 1 chứa ít nhất 2017 điểm thuộc tập S (mỗi điểm trong số 2017 điểm đó nằm trong hoặc nằm trên cạnh của tam giác T).
(Trích đề thi vào 10 chuyên LHP, Nam Định, năm học 2015-2016)