Cho tam giác ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại I, cắt đưởng thẳng AC tại điểm D.
a, CM tam giác ABC đồng dạng cới tam giác MDC
b, CM rằng BI.BA = BM.BC
c, CM góc BAM = gcs ICB. Từ đó cm AB là p/g của góc MAK với K là giao điểm của CI và BD
d, Cho AB = 8cm, AC = 6cm. Khi AM là đường p/g trong tam giác ABC, hãy tính diện tích tứ giác AMBD.
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Gọi M,N lần lượt là trung điểm của BC,AB.
a) CM: tam giác ABH đồng dạng tam giác CBA và \(AB^2=BH.BC\)
b) Tia phân giác góc ABC cắt AC tại D. Vẽ đường thẳng AK vuông góc BD tại K.
CM: tam giác BHD đồng dạng tam giác BKC.
c) CM: MN vuông góc AB và \(BH.BM=BN.BA\)
d) Từ B vẽ đường thẳng vuông góc với BC cắt MN tại I, CI cắt AH tại O.
CM: ON song song BC (câu chủ yếu)
cho tam giác ABC cân tại A có M là trung điểm của BC.gọi D là điểm đối xứng với A qua M
cm tứ giác ABDC là hình thoi
vẽ đường thẳng vuông góc với BC tại B cắt AC tại F.cm tứ giác ADBF là hình bình hành
Qua C vẽ đường thẳng song song với AD cắt AB tại E.cm tứ giác BCEF là hình chữ nhật
Nối EM cắt AC tại N kéo dài BN cắt EC tại I cm diện tích tam giác BIC bằng 1 phần 4 diện tích tứ giác BCEF
Cho tam giác ABC vuông tại A. Lấy một điểm bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E.
a. Chứng minh EA.EB=ED.EC và góc EAD=góc ECB
b.Kẻ DH vuông góc với BC(H thuộc BC) . Gọi P,Q thứ tự là trung điểm của các đoạn thẳng BH,DH. Chứng minh CQ vuông góc với PD
cho tam giác ABC vuông tại A đường cao AH từ điểm M bất kì trên HC kẻ đường thẳng song song với AB AC các đường thẳng này cắt nhau tại D và E, AM cắt DE tại O
tính số đo góc góc DHE
tìm vị trí của M trên BC để tứ giác HMED là hình thang cân
Cô loan ơi giúp em với
cho tam giác ABC vuông tại A đường cao AH từ điểm M bất kì trên HC kẻ đường thẳng song song với AB AC các đường thẳng này cắt nhau tại D và E, AM cắt DE tại O
tính số đo góc góc DHE
tìm vị trí của M trên BC để tứ giác HMED là hình thang cân
Cho tam giác ABC vuông tại C (AC<BC).Vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. Qua B vẽ dường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a) Chứng minh: tam giác AIC đồng dạng tam giác BIH
b) Cho AC = 15cm, BC = 25cm.Tính CB, CI.
c) Chứng minh HB2 = HI.HA.
d) Gọi K là trung điểm AB. Qua I vẽ dường thẳng vuông góc với IK cắt AC, BH lần lượt tại M và N. Chứng minh: I là trung điểm MN.
Cho tam giác ABC vuông tại C (AC<BC).Vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. Qua B vẽ dường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a) Chứng minh: tam giác AIC đồng dạng tam giác BIH
b) Cho AC = 15cm, BC = 25cm.Tính CB, CI.
c) Chứng minh HB2 = HI.HA.
d) Gọi K là trung điểm AB. Qua I vẽ dường thẳng vuông góc với IK cắt AC, BH lần lượt tại M và N. Chứng minh: I là trung điểm MN
Cho đoạn thẳng AM có M là trung điểm. Trên cùng một nửa mặt phẳng bờ Ab vẽ các tia Ax, By cùng vuông góc với AB. Lấy C bất kì trên tia Ax(C khác A). Qua M vẽ đường thẳng vuông góc với MC cắt tia By tại D và cắt tia đối của tia AC tại E
CM: a, AE=BD
b, So sánh: CD và CE. Từ đó chứng minh: AC+BD=CD
c, Vẽ MH vuông góc với CD( H thuộc CD). CM tứ giác AHDE là hình thang cân
d, Cho AH/HB=3/4 và AB=10cm. Tính AH, HB?
GIÚP MÌNH VỚI !!!!!!!