Có hai phép vị tự:
V ( O ; 1 ) ( O ; O A ) = ( O ; O A ) v à V ( 0 ; - 1 ) ( O ; O A ) = ( O ; O B )
Đáp án C
Có hai phép vị tự:
V ( O ; 1 ) ( O ; O A ) = ( O ; O A ) v à V ( 0 ; - 1 ) ( O ; O A ) = ( O ; O B )
Đáp án C
Số phát biểuđúng:
1. Qua phép vị tự có tỉ số k ≠ 0 , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó
2. Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.
3. Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.
4. Qua phép vị tự V(O;1), đường tròn tâm O sẽ biến thành chính nó.
5. Phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đó
6. Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với hệ số k
7. Trong phép vị tự tâm O, tỉ số k, nếu k < 0 thì điểm M và ảnh của nó ở về hai phía đối với tâm O.
8. Mọi phép dời hình đều là phép đồng dạng với tỉ số k = 1
9. Phép hợp thành của một phép vị tự tỉ số k và một phép đối xứng tâm là phép đồng dạng tỉ số
10. Hai đường tròn bất kì luôn có phép vị tự biến đường này thành đường kia
11. Khi k = 1 , phép vị tự là phép đồng nhất
12. Phép vị tự biến tứ giác thành tứ giác bằng nó
13. Khi k = 1, phép đồng dạng là phép dời hình
14. Phép đối xứng tâm là phép đồng dạng tỉ số k = 1
A.9
B.10
C.11
D.12
Số phát biểuđúng:
1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với nó
2. Phép biến hình biến mỗiđiểm M thành chính nó dọi là phép đồng nhất
3. Phép đối xứng trục, phép quay, phép tịnh tiến đều bảo toàn khoảng cách giữa hai điểm
4. Phép đối xứng tâm biến đường thẳng thành đường thẳng song song với nó
5. Phép vị tự là một phép đồng dạng
6. Phép biến hình F’ có được nhờ thực hiện liên tiếp các phép tịnh tiến, phép quay, phép vị tự là phép đồng dạng
7. Phép biến hình F’ có được nhờ thực hiện liên tiếp các phép tịnh tiến, phép quay, phép vị tự là phép dời hình
A.4
B.5
C. 6
D.7
Cho đường tròn (O;R). Có bao nhiêu phép vị tự biến (O;R) thành chính nó?
A. Không có phép nào
B. Có một phép duy nhất
C. Chỉ có hai phép
D. Có vô số phép
Cho đường tròn (O;R). Có bao nhiêu phép vị tự tâm O biến (O;R) thành chính nó?
A. 0
B. 1
C. 2
D. Có vô số
Cho đường tròn (O;R). Có bao nhiêu phép vị tự tâm O biến (O;R) thành chính nó?
A. Không có phép vị tự nào
B. Có một phép vị tự duy nhất
C. Chỉ có hai phép vị tự
D. Có vô số phép vị tự
Cho hai điểm phân biệt A, B và đường thẳng d. Hãy tìm một phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm, phép quay, phép vị tự.
a. Biến A thành chính nó;
b. Biến A thành B;
c. Biến d thành chính nó.
Trong năm phép biến hình: Tịnh tiến, đối xứng tâm, đối xứng trục, phép quay và phép vị tự. Có bao nhiêu phép biến hình luôn biến một đường thẳng thành đường thẳng song song hoặc trùng với nó?
A. 1
B. 2
C. 3
D. 4
Cho hai đường tròn (O;R) và (O’;R) (O không trùng với O’). Có bao nhiêu phép vị tự biến (O) thành (O’)?
A. không có phép vị tự nào
B. có một phép vị tự duy nhất
C. có hai phép vị tự
D. có vô số phép vị tự
Cho hai đường thẳng song song d và d’ và một điểm O không nằm trên chúng. Có bao nhiêu phép vị tự tâm O biến d thành d’?
A. 0
B. 1
C. 2
D. Có vô số