Cho hàm số y = 2 x + 1 x - 1 có đồ thị (C) . Có bao nhiêu điểm M thuộc (C) có tung độ nguyên dương sao cho khoảng cách từ M đến tiệm cận đứng bằng 3 lần khoảng cách từ M đến tiệm cận ngang của đồ thị (C).
A. 0
B. 3
C. 2
D. 1
Có bao nhiêu điểm M thuộc đồ thị (C) của hàm số y = x + 2 x - 2 sao cho khoảng cách từ điểm M đến tiệm cận ngang bằng 5 lần
khoảng cách từ M đến tiệm cận đứng?
A. 2.
B. 1
C. 3.
D. 4.
Cho điểm M thuộc đồ thị C của hàm số , biết M có hoàng độ a và khoảng cách từ M đến trục Ox bằng ba lần
khoảng cách từ M đến trục Oy. Giá trị có
thể có của a là
A.
B.
C.
D.
Cho hàm số y = x + 2 x - 3 có đồ thị (C). Tổng khoảng cách từ một điểm M thuộc (C) đến hai hai trục tọa độ đạt giá trị nhỏ nhất
bằng ?
A.2B. 2 3 C.1D 1 6
B. 2 3
C.1
D. 1 6
Cho hàm số y = x - 1 x - 2 có đồ thị (C).
Có bao nhiêu điểm M ∈ C sao cho tổng khoảng cách từ M đến hai đường tiệm cận bằng 2 ?
A. 1
B. 2
C. 4
D. 3
Cho hàm số y = x 2 + 3 x + 3 x + 2 có đồ thị (C). Tổng khoảng cách từ một điểm M thuộc (C) đến hai hai trục tọa độ đạt giá trị nhỏ nhất bằng ?
A.1B. 1 2 C.2D. 3 2
B. 1 2
C.2
D. 3 2
Cho hàm số y = x − 1 x + 1 có đồ thị (C), điểm M di động trên (C). Gọi d là tổng khoảng cách từ M đến hai trục tọa độ. Khi đó giá trị nhỏ nhất của d là:
A. 207 250 .
B. 2 − 1.
C. 2 2 − 1.
D. 2 2 − 2 .
Cho hàm số y = x - 1 2 x + 1 có đồ thị là (C). Gọi điểm M(x0; y0) với x0 > -1 là điểm thuộc (C) biết tiếp tuyến của (C) tại điểm M cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A; B và tam giác OAB có trọng tâm G nằm trên đường thẳng d: 4x+y=0. Hỏi giá trị của x0+2y0 bằng bao nhiêu?
A . -7/2
B. 7/2
C. 2
D.1
Tọa độ điểm M có hoành độ dương thuộc đồ thị hàm số y = x + 2 x - 2 sao cho tổng khoảng cách từ M đến 2 tiệm cận của đồ thị hàm số đạt giá trị nhỏ nhất là
A.
B.
C.
D.