Giải
\(xy-2x-3y=5\)
\(\Leftrightarrow xy-3y-2x=5\)
\(\Leftrightarrow y\left(x-3\right)-2x+6=11\)
\(\Leftrightarrow y\left(x-3\right)-\left(2x-6\right)=11\)
\(\Leftrightarrow y\left(x-3\right)-2\left(x-3\right)=11\)
\(\Leftrightarrow\left(y-2\right)\left(x-3\right)=11\)
\(\Leftrightarrow\hept{\begin{cases}y-2\\x-3\end{cases}}\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta có bảng sau :
\(x-3\) | \(-11\) | \(-1\) | \(1\) | \(11\) |
\(y-2\) | \(-1\) | \(-11\) | \(11\) | \(1\) |
\(x\) | \(-8\) | \(2\) | \(4\) | \(14\) |
\(y\) | \(1\) | \(-9\) | \(13\) | \(3\) |
Vậy có 4 cặp số nguyên x , y thỏa mãn \(\left(-8;1\right);\left(2;-9\right);\left(4;13\right);\left(14;3\right)\)
\(xy-2x-3y=5\Leftrightarrow x\left(y-2\right)-3\left(y-2\right)=11\Leftrightarrow\left(y-2\right)\left(x-3\right)=11\)\(\Leftrightarrow\hept{\begin{cases}x-3=1\\y-2=11\end{cases}}hay\hept{\begin{cases}x-3=11\\y-2=1\end{cases}}hay\hept{\begin{cases}x-3=-1\\y-2=-11\end{cases}}hay\hept{\begin{cases}x-3=-11\\y-2=-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4\\y=13\end{cases}}hay\hept{\begin{cases}x=14\\y=3\end{cases}}hay\hept{\begin{cases}x=2\\y=-9\end{cases}}hay\hept{\begin{cases}x=-8\\y=1\end{cases}}\)