Nghe chứng minh là thấy khó nuốt rồi !
Nghe chứng minh là thấy khó nuốt rồi !
Chứng minh:
a)\(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
b)\(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\forall a,b>0\)
c) Với a>b>0 và m>n (m,n \(\in\)N) chứng minh:
\(\frac{a^m-b^m}{a^m+b^m}>\frac{a^n-b^n}{a^n+b^n}\)
Cho m, n là 2 số tự nhiên lớn hơn 0 thỏa mãn \(\frac{m+1}{n}+\frac{n+1}{m}\inℤ.\) CM : (m, n) \(\le\sqrt{m+n}\).
Thực hiện phép tính
a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}+\sqrt{\frac{1}{ab}}}\right).\sqrt{ab}\)
b) \(\left(\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}\sqrt{mn}+\frac{a^2}{b^2}\sqrt{\frac{m}{n}}\right).a^2b^2.\sqrt{\frac{n}{m}}\)
1. Tính:
a. \(\text{[}\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\sqrt{\frac{1}{ab}}\text{]}\cdot\sqrt{ab}\)
b.\(\text{[}-\frac{am}{b}\cdot\sqrt{\frac{n}{m}}-\frac{ab}{n}\cdot\sqrt{mn}+\frac{a^2}{b^2}\cdot\sqrt{\frac{m}{n}}\text{]}\cdot\text{[}a^2b^2\cdot\sqrt{\frac{n}{m}}\text{]}\)
RÚT GỌN CÁC BIỂU THỨC SAU
\(A=\left(\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}\sqrt{mn}+\frac{a^2}{b^2}\sqrt{\frac{m}{n}}\right).a^2b^2\sqrt{\frac{n}{m}}\)
\(B=\frac{\sqrt{a}+a\sqrt{a}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
CÁC BẠN GIÚP MÌNH VỚI
chứng minh \(m\sqrt[m]{a}+n\sqrt[n]{b}\ge\left(m+n\right)\sqrt[m+n]{ab}\) với a;b>0; 1\(\le\)m,n \(\in\)N
a) cho a,b,c thỏa mãn a > c và b > c > 0. tìm số n nhỏ nhất để có bất đẳng thức sau :
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le n\sqrt{ab}\)
b) CMR với mọi số nguyên dương n
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
1,cmr
\(\frac{2\sqrt{mn}}{\sqrt{n}+\sqrt{n}+\sqrt{m+n}}\)=\(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)
1,rút gọn
a, 3\(\sqrt{27a}+2\sqrt{\frac{a}{3}}+a\sqrt{\frac{4}{3a}}\)
b,\(x^2\sqrt{\frac{12y}{x}}-xy\sqrt{\frac{x}{3y}}\)
c,\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
Cho \(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\left(m\ge0,n>1\right)\)
a,Rút gọn A
b,Tính A biết \(m=\sqrt{56+24\sqrt{5}}\)
c,Tìm GTNN của A