(1/2003+1/2004-1/2005)/(5/2003+5/2004-5/2005)-(2/2002+2/2003-2/2004)/(3/2002+3/2003-3/2004)
cmr 1-1/(2^2)-1/(3^2)-1/(4^2)-....-1/(2004^2)>1/2004
chứng tỏ rằng B =1-1/(2^2) - 1/(3^2) - 1/(4^2) - ... -1/(2004^2) > 1/2004
[(1/2)+(1/3)+(1/4)+(1/5)+...+(1/2005)]/[(2004/1)+(2003/2)+(2002/3)+...+(1/2004)]
1, CMR
1/3+1/32+1/33+1/34+...+1/32004+1/32005 <1/2
2, CMR
1-1/22-1/32-1/42-...-1/20042 >1/2004
1. C/m rằng
S = 1/2^2 - 1/2^4 + 1/2^6 - ... + 1/2^4n-2 - 1/2^4n + ... + 1/2^2002 - 1/2^2004 < 0,2
2. C/m rằng
B = 1 - 1/2^2 - 1/3^2 - 1/4^2 - ... - 1/2004^2 > 1/2004
CM
B=1-1/22-1/32-1/42-...-1/20042>1/2004
Chứng minh rằng B = 1-1/22-1/32-1/42-...-1/20042 > 1/2004
D=1/2 +1/3+1/4+...+1/2005:2004/1+2003/2+2002/2+...1/2004