Chứng minh:
\(B=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+....+\frac{9}{100!}
1) Cho \(A=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}.CMR:A< \frac{1}{9!}\)
2) \(CMR:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ai giúp mk sẽ đc thưởng 3 tick , phải ghi chép đầy đủ nha
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
CMR:
\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
Bài 1;Cho S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....................+\frac{1}{2012!}\)CMR: S <2
Bài 2:CMR \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...........+\frac{99}{100!}<\frac{1}{9!}\)
Bài 3: Cho E= \(1+\frac{1}{2}+\frac{1}{3}+...........+\frac{1}{20}\)CMR: E không phải là số tự nhiên
1,Chứng minh rằng
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
Chứng minh rằng \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\) < \(\frac{1}{9!}\)
Chứng minh:
A=\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9}\)