Cmr
\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2015}}< \frac{1}{2}\)
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017};B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\).CMR B/A là số nguyên
CMR:
\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+.........+\(\frac{1}{3^{2015}}\)<\(\frac{1}{2}\)
\(a=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2015^2}\)
cmr A không là số tự nhiên
tính
A=\(\left(\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}\right)\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\left(1+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
A = \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right).\)
B = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}}{\frac{2015}{1}+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}}\)
a)A=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
b)A =\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\)và B = \(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{3}{2016}\)
Tính \(\frac{B}{A}\)
Thực hiện phép tính:
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)
\(B=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)