Ta có: \(Q\left(x\right)=x^2-6x+2019\)
\(=\left(x-3\right)^2+2010\)
Vì \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2010\ge2010\forall x\)
Vậy đa thức Q(x) vô nghiệm.
\(Q\left(x\right)=\left(x^2-2x.3+3^2\right)+2019-9=0\)
\(Q\left(x\right)=\left(x+3\right)^2+2010=0\)
Vì \(Q\left(x\right)=\left(x+3\right)^2\ge0\forall x\)
\(Q\left(x\right)\ge2010>0\)
Vậy...