\(A=11^{n+2}+12^{2n+1}\)
\(=11^n.121+144^n.12\)
\(=11^n.133+144^n.12-11^n.12\)
\(=11^n.133+12\left(144^n-12^n\right)\)
Ta có \(a^n-b^n⋮a-b\Rightarrow144^n-12^n⋮133\)
\(\Rightarrow11^n.133+12\left(144^n-12^n\right)⋮133\)
Vậy \(A=11^{n+2}+12^{2n+1}⋮133\left(đpcm\right)\)