a) \(x^2-4x+5\)
= \(\left(x^2-2.2x+4\right)+1\)
= \(\left(x-2\right)^2+1\)
Ta co: \(\left(x-2\right)^2>=0\)
=>\(\left(x-2\right)^2+1>=1>0\)
b) \(x^2-4xy+5y^2\)
=\(\left(x^2-4xy+4y^2\right)+y^2\)
= \(\left(x-2y\right)^2+y^2\)
Ta co: \(\left(x-2y\right)^2>=0\)
\(y^2>=0\)
=> \(\left(x-2y\right)^2+y^2>=0\)
c) \(3-2x-x^2\)
= \(-\left(x^2+2x\right)+3\)
= \(-\left(x^2+2.1x+1-1\right)+3\)
= \(-\left(x+1\right)^2+4\)
=
Hình như câu này sai đề ...
a) \(x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1>0\)
b) \(x^2-4xy+5y^2\)
\(=x^2-4xy+4y^2+y^2\)
\(=\left(x-2y\right)^2+y^2\)
Dấu = xảy ra khi: \(x=y=0\)
c) \(-3-2x-x^2\)
\(=-2-x^2-2x-1\)
\(=-2-\left(x+1\right)^2=-\left[2+\left(x+1\right)^2\right]< 0\)