Cho tam giác ABC, AB=AC=1, \(\widehat{A}=2\alpha\left(0< \alpha< 45\right)\). Vẽ đường cao AD, BE
a) Các tỉ số lượng giác \(\sin\alpha,\cos\alpha,\sin2\alpha,\cos2\alpha\)được biểu diễn bởi những đường thẳng nào?
b) Chứng minh: tam giác ADC đồng dạng với tam giác BEC, từ đó suy ra các hệ thức:
\(\sin2\alpha=2\sin\alpha\cos\alpha\)\(\cos2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1=\cos^2\alpha-\sin^2\alpha\)Chứng minh rằng khi góc \(\alpha\)nhọn thì :
a) \(\sin2\alpha=2\sin\alpha\cos\alpha\)
b) \(\cos2\alpha=1-2\sin^2\alpha\)
C/m \(\forall\alpha< 45^0\)thì ta có\(\sin2\alpha=2sin\alpha.cos\alpha\)và \(cos2\alpha=cos^2\alpha-sin^2\alpha\)
VỚI \(0\) ĐỘ \(< 45\) ĐỘ. CHỨNG MINH RẰNG
\(\sin2\alpha=2\sin\alpha\cos\alpha\)\(;\) \(\cos2\alpha=\cos^2\alpha\) \(-\sin^2\alpha;\) \(\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}\)
Cho \(\alpha\)là góc nhọn
Chứng minh: \(\sin2\alpha=2\sin\alpha\cdot\cos\alpha\)
\(\cos2\alpha=1-2\sin^2\alpha\)
1 cho \(0< \alpha< 45^ô\) .Chứng minh: \(\cos2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1\)
Chứng minh rằng:
*\(\tan3\alpha=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}\)
*\(\sin^6\alpha-\cos^6\alpha=-\cos2\alpha\left(1-\sin^2\alpha\cos^2\alpha\right)\)
Chứng minh các biểu thức sau không phụ thuộc vào các góc nhọn \(\alpha\)
a) \(C=\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\)
b) \(D=\sin^2\alpha.\sin^2\beta+\sin^2\alpha.\cos^2\beta+\cos^2\alpha\)
c) E=\(\sin^6\alpha+\sin^6\beta+3.\sin^2\alpha.\cos^2\alpha\)
d) \(M=\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha+\sin\alpha\right)^2}{\cos\alpha.\sin\alpha}\)
rút gọn biểu thức sau:
b, \(\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha-\sin^2\alpha\right)}{\cos\alpha.\sin\alpha}\)
c,\(C=\sin^6\alpha+\cos^6\alpha+3\sin^6\alpha.\cos^2\alpha\)