Ta có \(68^{n+1}-689=68^n.68-68=68.\left(68^n-1\right)=68.\left(68^n-1^n\right)\)
\(=68.\left(68-1\right).\left(68+1\right)=68.67.69=67.68.69\)
Vì \(67⋮67\)nên \(67.68.69⋮67\)hay \(68^{n+1}-68\)chia hết cho \(67\)
Vậy \(68^{n+1}-68⋮67\)
Ta có \(68^{n+1}-689=68^n.68-68=68.\left(68^n-1\right)=68.\left(68^n-1^n\right)\)
\(=68.\left(68-1\right).\left(68+1\right)=68.67.69=67.68.69\)
Vì \(67⋮67\)nên \(67.68.69⋮67\)hay \(68^{n+1}-68\)chia hết cho \(67\)
Vậy \(68^{n+1}-68⋮67\)
CMR \(68^{n+1}\)- \(68\)chia hết cho 67
CMR:
a, 29-1 không chia hết cho 3
b, 56-104 không chia hết cho 9
c, (n+6)2-(n-6)2 chia hết cho 24(n thuộc Z)
d, (3n+4)2-16 chia hết cho 3( với mọi n thuộc Z)
Chứng minh
b.9^2n +14 chia hết cho 5 (n thuộc N)
a.2^2002 -4 chia hết cho 31
c.(6^2n+1)+(5^n+2) chia hết 31
d.1979^1979 - 1981^1981 +1982 chia hết 1980
e.9.10^n +18 chia hết 27
Với n thuộc N và n > 1 sao cho 2n - 2 chia hết cho n
Chứng minh: \(2^{2^n}-1\)chia hết cho 2n-1
Tồn tại hay ko n thuộc N sao cho (2^2.n)+(2^n)+1 chia hết cho 2015^2016
Tồn tại hay ko n thuộc N sao cho (2^2.n)+(2^n)+1 chia hết cho 2015^2016
Tìm n thuộc Z để:
a)(2n^2+n—7) chia hết cho (n—2)
b)(10n^2—7n—5) chia hết cho (2n—3)
c)(2n^2+3n+3) chia hết cho (2n—1)
Tồn tại hay ko n thuộc N sao cho (2^2.n)+(2^n)+1 chia hết cho 2015^2016
Giải thích dùm cái
cho m thuộc z , n thuộc z
biết A = m x n x(m^4 - n^4)
C/m A chia hết cho 30