CMR :
a) N = 1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n thuộc N ; n lớn hơn hoặc bằng 2 )
b) P = 2!/3! + 2!/4! + 2!/5! + ... + 2!/n! < 1 ( n thuộc N ; n lớn hơn hoặc bằng 3 )
CMR: 2! / 3! + 2! / 4! + 2! / 5! + ...... + 2! / n! <1 ( n thuộc N ; n bé hơn hoặc = 2 )
Cho A = 1/5^2 + 2/5^3 + 3/5^4 + .... + 11/5^12 + ... + n/5^n+1
với n thuộc N . CMR A < 1/16
1/Cho A=4^0+4^1+4^2+4^3+4^4+...+4^98
a/A có chia hết cho 5?tại sao?
b/tìm X thuộc N sao cho3xA+1=2^X
c/so sánh 3xa+1 với B=3^2^100
2/
a/so sánh 127^23 và513^18
b/so sánh 3^23 và 5^16
3/CMR A chia hết cho 4 biết A=3^0+3^1+3^2+3^3+3^4+...+3^1991
4/CMR (36^20-9^10) chia hết cho 405
5/cho S=5+5^2+5^3+5^4+...+5^2013 CMR 4xS+5 là số chính phương
6/tìm n thuộc N sao để 2^n-1 nà 2^n+1 đồng thời là hai số nguyên tố
7/tìm n thuộc N sao để 2^n-1 nà 2^n+1 không đồng thời là hai số nguyên tố
8/tìm chữ số X và số tự nnhieen X sao cho (12+3xX)^2=1a96
CMR:3^1*3+3^3*5+.....+3^n*(n+2)=3n+3^2n+4
Với n không thuộc N và n không bằng 0
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
CMR:1/2^2+1/3^2+1/4^2+....+1/(n-1)^2+1/n^2<1. Với n thuộc N ; n > 2
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
Tìm n thuộc Z để A =n^3-2n^2+3/n-2
CMR phân số 8n+5/6n+4 tối giản với mọi n thuộc số nguyên