Giải bằng phương pháp quy nạp
CMR với mọi n thuộc N* ta có:
\(a,1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(b,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\)
\(c,1^3+2^3+3^3+...+n^3=\frac{n^2.\left(n+1\right)^2}{4}\)
CMR \(\frac{1.3.5.7............\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)............2n}\)=\(\frac{1}{2^n}\)
CMR : \(\frac{1.3.5.7..............\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...............2n}\) =\(\frac{1}{^{2^n}}\)
CMR
\(1\times3+2\times4+3\times5+\left(n-1\right)\left(n+1\right)=\frac{\left(n-1\right)n\left(2n+1\right)}{6}\)
CMR : A = \(\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)....\left(2n-1\right).2n}{2^n}\) là một số nguyên
cmr với mọi n thuộc N, n > hoặc = 2 ta có
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
CMR:
\(1^2+2^2+3^2+...+n^2=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\)
1)CMR:
a) \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b) \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)( n thuộc N* )
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)