Ta có: 1/22 + 1/32 + 1/42 +..+1/1002 = 1/2.2 + 1/3.3 + 1/4.4 +...+ 1/100.100 < 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/99.100 = 1 - 1/2 + 1/2 - 1/3 +1/3 - 1/4 +...- 1/100 = 1- 1/100 < 1
Vậy 1/22 + 1/32 + 1/42 +..+1/1002 < 1 (đpcm)
Ta thấy
+> 1/22 < 1/(1.2)
+> 1/32 < 1/(2.3)
+> 1/42 <1/(3.4)
.........
+> 1/1002 <1/(99.100)
Do đó
1/22+1/32+1/42+...+1/1002 < 1/(1.2)+1/(2.3)+1/(3.4)+...+1/(99.100)
Mặt khác
1/(1.2)+1/(2.3)+1/(3.4)+...+1/(99.100) = 1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
= 1-1/100
Vì : 1/100 > 0 => 1-1/100 < 1
hay : 1/(1.2)+1/(2.3)+1/(3.4)+...+1/(99.100) <1
mà : 1/22+1/32+1/42+...+1/1002 < 1/(1.2)+1/(2.3)+1/(3.4)+...+1/(99.100)
=> 1/22+1/32+1/42+...+1/1002 < 1 _ (đpcm)