CMR
Cmr 1^2002 + 2^2002 +....+2002^2002 chia hết cho 11
CMR \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}< \frac{44}{45}\)
2002/√2003+2003/√2002>√2002(√2003
cho n! = 1*2*3*...*n ; tinh
A= (1/2! + 2/3! + 3/4! +...+ 2001/2002!) + 1/2002!
chứng minh : \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)
Chứng minh : \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)
\(x^4+\sqrt{x^2+2002}=2002\)
\(x^4+\sqrt{x^2+2002}=2002\)
Chưng minh rằng:
\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)