R/g\(\left[\left(x^3-1\right)-\frac{7-x^3}{3+x^3}.\frac{4}{x^5+3x^2}\right]:\left[\frac{3x^6-12}{x^9+6x^6+9x^3}.\frac{x}{3x^3+6}\right]\)
\(\left(\frac{X^2+3X}{X^3+3X^2+9X+27}+\frac{3}{X+9}\right):\left(\frac{1}{X-3}-\frac{6X}{X^3-3X^2+9X-27}\right)\)
rút gọn biểu thức:
P = \(\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
Q= \(\left(x^3-1-\frac{7-x^3}{3+x^3}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^4-24}{x^9+6x^6+9x^3}.\frac{2x}{3x^3+6}\right)\)
Rút gọn
a) \(\left(\frac{4}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
b) \(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
c) \(\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10x}{1-6x+9x^2}\)
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
Trừ phân thức
a) \(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)
b) \(\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x^2}{x^2-9}\)
1 . \(\left(3x-2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)
2 . \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
3 . \(4\left(0,5-1,5x\right)=\frac{5x-6}{3}\)
4 . \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
5 . \(\frac{8x^2}{3\left(1-4x^2\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
Tính:
a) \(\left(x^2-2\right).\left(1-x\right)+\left(x+3\right).\left(x^2-3x+9\right)\)
b) \(\left(2x^4+x^3-3x^2+4x-3\right):\left(x^2-x+1\right)\)