bài 1 cmr với mọi số nguyên n ta luôn có
\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
b2 tìm min
\(y=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)
Giúp mk với mọi người
\(\left(\sqrt{x}-\frac{x\sqrt{x}-1}{1-\sqrt{x}}\right):\frac{x-1}{x-2\sqrt{x}+1}\left(0< x\text{≠}1\right)\)
Chứng minh rằng với mọi x ta luôn có :
\(\left(2x+1\right)\sqrt{x^2-x+1}>\left(2x-1\right)\sqrt{x^2+x+1}\)
1.Giả sử a,b,c là 3 số dương sao cho ax+b(1-x)>cx(1-x) với mọi giá trị của x. CMR khi đó với mọi giá trị của x ta cũng có
ax+c(1-x)>bx(1-x) và bx+c(1-x)>ax(1-x)
2.Cho các số thực x,y,z >0. CMR
\(16xyz\left(x+y+z\right)\le3\sqrt[3]{\left(x+y\right)^4.\left(y+z\right)^4.\left(x+z\right)^4}.\)
3.Giải các bất phương trình sau
\(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}\sqrt{x}}\)
Chứng minh rằng với mọi 0 ≤ x ≤ 1 ta luôn có :
\(x\left(9\sqrt{1+x^2}+13\sqrt{1-x^2}\right)\le16\)
Olympic 30/4 , 1996
Giải phương trình:
1, \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
2, \(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)
3, \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
- Sử dụng phương pháp liên hợp
Mọi người giúp mình với ạ mình đang cần gấp!
À sau khi nhân liên hợp chia ra 2 trường hợp, VD như bài 3 sau khi nhân liên hợp sẽ được: \(\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+15}+4}-3-\frac{x+1}{\sqrt{x^2+8}+3}\right)=0\)
Nếu được mọi người giải thích giùm em tại sao biểu thức trong dấu ngoặc thứ 2 luôn luôn khác 0 ạ (Tương tự với các bài khác nếu được)
\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a, Rút gọn
b, Tìm x để P=-1
c, tìm m để với mọi giá trị x>9 Ta có \(m\left(\sqrt{x}-3\right)P>x+1\)
1) tính
a) (\(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)với x>0 , x khác 1 b) (\(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right).\left(x-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)c) \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)với a,b>0 a #b2) Giari phương trình
\(\sqrt[3]{x-8}+\sqrt{x+7}+x^3-8x^2-8x-14=0\)
Mong mọi người giúp mình giải bài với ạ
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.