`<=> (x^2-7x+6)(x^2-7x+12)`.
Đặt `t = x^2- 7x + 9`
PT trở thành `(t-3)(t+3) + 9`
`= t^2-9+9`
`= (x^2-7x+9)^2` là số chính phương `forall x in ZZ`.
`<=> (x^2-7x+6)(x^2-7x+12)`.
Đặt `t = x^2- 7x + 9`
PT trở thành `(t-3)(t+3) + 9`
`= t^2-9+9`
`= (x^2-7x+9)^2` là số chính phương `forall x in ZZ`.
a)CMR với mọi x,y thuộc Z thì
S=(x+y)(x+2y)(x+3y)(x+4y)y^4 là số chính phương
b) Cho T=(t-1)(t-3)(t-4)(t-6)+9
1)CM: T lớn hơn hoặc bằng 0 với mọi t
2)T là số chính phương với mọi t thuộc Z
Giúp cai nka tối mik phải đi học
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Giúp cái nha chiều đi học rồi
Bài 1: Tính nhanh:
37,5.6,5 - 7,5.3,4 - 6,6.7,5 + 3,5.37,5
Bài 2: Tìm x, biết:
a) x^3 - 0,25x = 0
b) x^2 - 10x = - 25
c) x^3 - 13x = 0
d) x^2 + 2x - 1 = 0
Bài 3: CMR: Với mọi n thuộc Z thì:
a) (5n + 2)^2 - 4 chia hết cho 5
b) (n - 3)^2 - (n - 1)^2 chia hết cho 8
c) (n - 6)^2 - (n - 6) chia hết cho 24
Bài 4: Tìm n thuộc N để B = n^2 + 5 là số chính phương
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
Cho x,y thuộc Z,chứng minh rằng các số sau là số chính phương:
M=(x+1)(x+3)(x+4)(x+6)+9
N=(x-y)(x-2y)(x-3y)(x-4y)+y^4
CMR
A=[x+1].[x+3].[x+4].[x+6]+9 là số chính phương
cho đa thức A=(x+2)(x+4)(x+6)(x+8)+16
CMR vs mọi sô tự nhiên x thì A luôn là 1 số chính phương
Mình đang học về chuyên đề số chính phương có vài câu hỏi khó nhờ các bạn giải giúp trước thứ Ba ngày 26/1/2016 cảm ơn các bạn nhiều lắm !!!
Câu 1: a) Chứng minh 11...122...25 là số chính phương (với n số 1 và n+1 số 2)
b) Cho B = 44...4 (100 số 4) = 4 x 11...1 (100 số 1) là số chính phương. Chứng minh 11...1 (100 số 1) là số chính phương
Câu 2: a) Cho các số A= 11.....11 (2m chữ số 1) ; B = 11...11 (m+1 số 1) ; C = 66...6 (m chữ số 6)
CMR: A+B+C+8 là số chính phương
b) CMR: Với mọi x,y thì A = (x+y)(x+2y)(x+3y)(x+4y) + y4 là số chính phương
CMR: giá trị của biểu thức sau là 1 số chính phương với mọi giá trị nguyên của x
x(x +2) (x+3) (x + 5 ) +9