Mỗi số khi chia cho 3 thì xảy ra 1 trong 3 trường hợp sau:
n=3k;n=3k+1;n=3k+2 (k là số tự nhiên)
+ Nếu n= 3k thì=> n(n+2)(n+13) chia hết cho 3. (1)
+Nếu n=3k+1 => :n(n+2)(n+13)=(3k+1)(3k+1+2)(3k+1+13)
=(3k+1)(3k+3)(3k+14)
=(3k+1)(k+1)3(3k+14)
Vì 3 chia hết cho 3=>(3k+1)(k+1)3(3k+14) chia hết cho 3.
Hay n(n+2)(n+13) chia hết cho 3. (2)
+Nếu n=3k+2 =>n(n+2)(n+13)=(3k+2)(3k+2+2)(3k+2+13)
=(3k+2)(3k+4)(3k+15)
=(3k+2)(3k+4)(k+5)3
Vì 3 chia hết cho 3=>(3k+2)(3k+4)(k+5)3 chia hết cho 3.
Hay n(n+2)(n+13) chia hết cho 3. (3)
Từ (1),(2) và (3) => với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.
Vậy với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.