BÀI 1: CMR với mọi số tự nhiên \(n\ge3\)
\(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{n^3}< \frac{1}{12}\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 3: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{1}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk với!!!!!
Chứng minh rằng với mọi số tự nhiên n\(\ge\)3
B=\(\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+...+\frac{1}{n^3}< \frac{1}{12}\)
CMR với mọi số tự nhiên n\(\ge\) 2, ta có : \(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{n^3}< \frac{1}{4}\)
CMR : với mọi số tự nhiên n > 1, ta có :
a) \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)
b) \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
CMR: với mọi số tự nhiên \(n\ge2\), tổng :
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)không thể là số tự nhiên
CMR: với mọi số tự nhiên \(n\ge2\), tổng:
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) không thể là số tự nhiên
BÀI 1: CMR với mọi số tự nhiên n \(\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{1}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk nha. Ai đúng và nhanh nhất mk hứa sẽ giúp bn tăng 3 điểm hỏi đáp
Liên hệ: https://olm.vn/thanhvien/quynhgiang2k4
Chứng minh rằng với mọi số tự nhiên n>1
b)\(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)
CMR với mọi n thuộc n và n >3 thì \(C=1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}< 2\)