xét n=3k=>n(n+2)(n+7) chia hết cho 3(1)
xét n=3k+1=>n+2=3k+3=3(k+1)
=>n(n+2)(n+7) chia hết cho 3(2)
xét n=3k+2=>n+7=3k+9=3(k+3)
=>n(n+2)(n+7) chia hết cho 3(3)
từ (1);(2);(3)=>n(n+2)(n+7) chia hết cho 3
=>đpcm
xét n=3k=>n(n+2)(n+7) chia hết cho 3(1)
xét n=3k+1=>n+2=3k+3=3(k+1)
=>n(n+2)(n+7) chia hết cho 3(2)
xét n=3k+2=>n+7=3k+9=3(k+3)
=>n(n+2)(n+7) chia hết cho 3(3)
từ (1);(2);(3)=>n(n+2)(n+7) chia hết cho 3
=>đpcm
cmr với mọi n là số tự nhiên ta có n.(n+2).(n+7) chia hết cho 3
cmr với mọi n là số tự nhiên ta có n.(n+2).(n+7) chia hết cho 3
Tìm tất cả các số tự nhiên n để 2n-1 chia hết cho 7.
CMR với mọi số tự nhiên n thì 2n+1 không chia hết cho 7
1) Tìm số có 2 chữ số ab sao cho số N=ab - ba là số chính phương
2) CMR 5X² + 10 và 4x² + 4x + 6 không phải là số chính phương
3) CMR (5k)² -1 và (7k)² -1 chia hết cho 24
4) CMR với mọi n thuộc số tự nhiên ta có (7.5^2n)+(12.6^n) chia hết cho 19
CMR với mọi số tự nhiên n thì S= 7+7^2+7^3+7^4+.....+7^4n chia hết cho 400
a) Cho a,b là các số tự nhiên thỏa mãn a + 4b chia hết cho 13. CMR 10a + b cững chia hết cho 13
b) CMR với mọi n nguyên dương thì 3n+2 - 2n+3 + 3n - 2n
CMR: với mọi số tự nhiên n thì: (n+1)(n+4) chia hết cho 2
cmr với mọi n thuộc N thì A=(n^4+2n^3+2n)chia hết cho 4 là tích của hai số tự nhiên liên tiếp
Chứng minh rằng: Với mọi số tự nhiên n ta có: n3 - n chia hết cho 3