Cho 2 so thuc a, b thoa man dieu kien ab= 1, a+ b\(\ne\)0. Tinh gia tri bieu thuc :
P= \(\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^3}\left(\frac{1}{a}+\frac{1}{b}\right)\)
1. Cho \(a,b\in Z;a,b\ne0;a\ne3b;a\ne-5b\). C/m giá trị A là 1 số nguyên lẻ \(A=\frac{b\left(2a^2+10ab+a+5b\right)}{a-3b}:\frac{a^2b+5ab^2}{a^2-3ab}\)
2. Cho \(x+y+z=1\)và \(x\ne-y;y\ne-z;z\ne-x\)
Tính giá trị biểu thức \(Q=\frac{xy+z}{\left(x+y\right)^2}.\frac{yz+x}{\left(y+z\right)^2}.\frac{zx+y}{\left(z+x\right)^2}\)
3. Cho \(xyz=1\).Tính \(P=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y-\frac{1}{y}\right)\left(z-\frac{1}{z}\right)\)
1) Cho \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)
CM \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
2) Cho \(\frac{1}{a}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a-b}\)và \(ac\ne0\); \(a\ne b\); \(b\ne c\)
CM \(\frac{a}{c}=\frac{a-c}{b-c}\)
1) Tìm x biết : a) \(a^2x+x=2a^2-3\) ; b) \(a^2x+3ax+9=a^2\left(a\ne0;a\ne-3\right)\)
2) Cho a + b + c = 3,rút gọn biểu thức \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
3) Chứng minh rằng nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1;x=y+z\)thì \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
1. Cho \(4a^2+b^2=5ab\) và 2a>b>0
Tính \(A=\frac{ab}{4a^2-b^2}\)
2.Cho \(2x^2+2y^2=5xy\)và x>y>0
Tính \(A=\frac{x+y}{x-y}\)
3.Cho \(a^3+b^3+c^3=3ab\)
Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
4. Cho \(a+b+c=0\left(a,b,c\ne0\right)\)
Rút gọn: \(A=\frac{ab}{a^2+b^2-c}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
5.Cho \(a\ne b,b\ne c,c\ne a\)và ab+bc+ac =1
Tính \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
Lm đc càng nhiều càng tốt nha. Giúp mk vs nha!!
CHO \(ABC\ne O\)VÀ \(\left(A+B+C\right)^2=A^2+B^2+C^2\).CM \(\frac{1}{A^3}+\frac{1}{B^3}+\frac{1}{C^3}=\frac{3}{ABC}\)
Cho \(a+b=1,a\ne0,b\ne0\)
CMR : \(\frac{b}{a^3-1}-\frac{a}{b^3-1}=\frac{2\left(a-b\right)}{a^2b^2+3}\)
1/ CMR : \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
2/ Xét \(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)
a/ rút gọn
b/ tìm GTNN mà A đạt được biết a + b = 4
3/ CMR giá trị biểu thức biểnsau ko phụ thuộc vào giá trị của biến
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\) khi \(x\ne0;y\ne0;x\ne y\)