<=>1+a/b+a/c+1+b/a+b/c+1+c/a+c/b>=9<=>a/b+a/c+b/a+b/c+c/a+c/b>=6
Áp dụng BĐT Cauchy cho a/b>0 và b/a>0, ta có a/b+b/a>=2. T.tự ta có a/c+c/a>=2, b/c+c/b>=2. Vậy ta có điều phải chứng minh
<=>1+a/b+a/c+1+b/a+b/c+1+c/a+c/b>=9<=>a/b+a/c+b/a+b/c+c/a+c/b>=6
Áp dụng BĐT Cauchy cho a/b>0 và b/a>0, ta có a/b+b/a>=2. T.tự ta có a/c+c/a>=2, b/c+c/b>=2. Vậy ta có điều phải chứng minh
Chứng minh rằng với a,b,c là các số dương, ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
1)Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội của 24
2) CMR nếu:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\left(1\right)\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(c^2+a^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
3) Cho độ dài ba cạnh a,b,c của một tam giác. CMR:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
\(2\left(a+b+c\right)\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\ge9\) với mọi a; b;c dương
CMR :\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)
Trong đó a,b,c là các số thực dương không nhỏ hơn 1
Giải phương trình;\(m\left(2x-m\right)\ge2\left(x-m\right)+1\)Với m là tham số.
Với a,b,c là số dương. Chứng minh
a) \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
b)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
1. Cho a, b, c > 0. Cmr
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
2. Cho các số dương a,b thỏa mãn \(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
Tính GTNN của biểu thức \(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}\)
1.Cho a,b,c dương. CMR: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
2. Cho a,b khác 0. CMR: \(a^4+b^4\le3\left(\frac{a^6}{b^2}+\frac{b^6}{a^2}\right)\)
CÁC THIÊN TÀI ĐÂU!!! Giúp với nhé!
Cho a, b, c là độ dài 3 cạnh của tam giác.
Chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
Cho a, b, c là các số thực dương thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
CMR: \(\frac{a}{bc\left(a+1\right)}+\frac{b}{ac\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\frac{1}{4}\)