\(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\).
\(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4b^2t^2-3bt.b}{9b^2t^2+7b^2}=\frac{4t^2-3t}{9t^2+7}\)
\(\frac{4c^2-3cd}{9c^2+7d^2}=\frac{4d^2t^2-3dt.d}{9d^2t^2+7d^2}=\frac{4t^2-3t}{9t^2+7}\)
Suy ra đpcm.
\(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\).
\(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4b^2t^2-3bt.b}{9b^2t^2+7b^2}=\frac{4t^2-3t}{9t^2+7}\)
\(\frac{4c^2-3cd}{9c^2+7d^2}=\frac{4d^2t^2-3dt.d}{9d^2t^2+7d^2}=\frac{4t^2-3t}{9t^2+7}\)
Suy ra đpcm.
cm rằng từ tỉ lệ thức a/b =c/d ta có tỉ lệ thức sau \(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4c^2-3cd}{9c^2+7d^2}\)
Chứng minh rằng từ \(\frac{a}{b}\)=\(\frac{c}{d}\)ta có tỉ lệ thức sau:
\(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4c^2-3cd}{9c^2+7d^2}\)
Cho tỉ lệ thức\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng ta có tỉ lệ sau: \(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)
cho tỉ lệ thức :
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
CMR \(\frac{a}{b}=\frac{c}{d}\)
cho tỉ lệ thức :
\(\frac{a}{b}=\frac{c}{d}\)
CMR
a)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
b)\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Cho dãy tỉ số :\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
CMR \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho tỉ lệ thức:\(\frac{a}{b}=\frac{c}{d}.Chứngminh:\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}CM\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)với điều kiện mẫu thức xác định
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\). Chứng minh : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\) . Với điều kiện mẫu thức xác định.
Cho tỉ lệ thức a/b=c/d.chưng minh: \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{b}{c}\)CMR : \(\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\)