Gọi 6 người bất kì là A, B, C, D, E
Trong 6 người đó ta chọn ra một người A.Trong 5 người còn lại ta chia thành 2 nhóm:
+Nhóm 1 gồm những người quen A
+Nhóm 2 gồm những người ko quen A
Có 5 người mà chỉ có 2 nhóm\(\implies\)Tồn tại ít nhất 3 người thuộc cùng một nhóm.Tức là tồn tại ít nhất 3 người quen A hoặc tồn tại ít nhất 3 người ko quen A
⊛Nếu tồn tại ít nhất 3 người quen A. Gọi 3 người đó là B, C, D
+Nếu trong 3 người B, C, D có 2 người nào đó quen nhau.Giả sử 2 người đó là B và C thì ta có 3 người A, B, C là 3 người đôi một quen nhau
+Nếu trong 3 người B, C, D ko có 2 người nào đó quen nhau thì 3 người B, C, D là 3 người đôi một ko quen nhau
⊛Nếu tồn tại 3 người ko quen A.Giả sử 3 người đó là D, E, G
+Trong 3 người D, E, G nếu có 2 người nào đó ko quen nhau.Giả sử 2 người đó là D và E thì 3 người A, D, E là 3 người đôi một ko quen nhau
+Nếu trong 3 người D, E, G ko có 2 người nào ko quen nhau thì 3 người D, E, G là 3 người đôi một quen nhau
Vậy trong 6 người bất kì luôn tồn tại 3 người đôi một quen nhau hoặc 3 người đôi một ko quen nhau (ĐPCM)