Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đăng Khoa

cmr tổng này không chia hết cho 10

405^n  +  2^405 + m^2

Võ Đông Anh Tuấn
1 tháng 7 2016 lúc 15:55

 ta có 405^n luôn có c/số tận cùng bằng 5 (vì 405 tận cùng bằng c/số 5)  

-- với 2^405 ta để ý lũy thừa với cơ số là 2 có quy luât c/số tận cùng như sau:  

2^1=2 ; 2^2=4 ;2^3=8 ;2^4=16 ; 2^5=32 ......... rút ra quy luật là : c/số tận cùng lặp lại quy luật 1 nhóm

 gồm 4 c/số (2 ;4 ;6;8)  

ta có 405 :4 =100 (nhóm)dư 1 c/số 2 => c/số tận cùng của 2^405 là 2  

+ m^2 (với m Є N ),có c/số tận cùng là 1 trong các c/số sau: 0 ;1 ;4 ;5 ;6 ;9

 => 405^n + 2^405 + m^2 có c/số tận cùng là c/số tận cùng trong các kết quả sau :  

(5+2+0=7; 5+2+1=8 ;5+2+4=11 ;5+2+5=12; 5+2+6=13 ;5+2+9 =16)  

=>405^n + 2^405 + m^2 không chia hết cho 10 vì số chia hết cho 10 phải có c/số tận cùng =0

 vậy biểu thức A = 405^n + 2^405 + m^2 ( m,n Є N, n # 0) không chia hết cho 10 

Đăng Khoa
1 tháng 7 2016 lúc 16:18

bạn giải làm bài giải giùm mình chứ đừng giảng tớ không hiểu nổi đâu


Các câu hỏi tương tự
Nguyễn Thị Ngọc Mai
Xem chi tiết
Vũ Trần Khánh Linh
Xem chi tiết
Nguyễn Thùy dung
Xem chi tiết
Nguyễn Thế Lâm
Xem chi tiết
vân navy
Xem chi tiết
Carthrine
Xem chi tiết
vuanhtai
Xem chi tiết
Sao Cũng Được
Xem chi tiết
Hoàng Thị Thảo Uyên
Xem chi tiết