Gọi 2 số đó là a và b
Ta có:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)mà (a + b) chia hết cho 6
=> \(\left(a+b\right)\left(a^2-ab+b^2\right)\) chia hết cho 6
hay \(a^3+b^3\) chia hết cho 6 (đpcm)
Gọi 2 số đó là a và b
Ta có:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)mà (a + b) chia hết cho 6
=> \(\left(a+b\right)\left(a^2-ab+b^2\right)\) chia hết cho 6
hay \(a^3+b^3\) chia hết cho 6 (đpcm)
Chứng minh rằng:
a) Tổng các lập phương của hai số nguyên chia hết cho 6 khi và chỉ khi tổng hai số nguyên đó chia hết cho 6
b) Tổng các lập phương của ba số nguyên chia hết cho 6 khi và chi khi tổng ba số nguyên đó chia hết cho 6
1/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8.CMR: hiệu 2 số đó cũng chia hết cho 8
2/ CM: Nếu bình phương thiếu của tổng hai số nguyên chia hết chi 6 thì tích 2 số ấy cũng chia hết cho 9
3/ CM: TỔng các lập phương của 3 sô nguyên liên tiếp thì chia hết cho 9
Chứng minh rằng tổng các lập phương của hai số nguyên chia hết cho 6 khi và chỉ khi tổng của hai số nguyên đó chia hết cho 6
GIÚP MIK VỚI
Chứng minh rằng tổng của hai số tự nhiên bất kì chia hết cho 6 khi và chỉ khi tổng các lập phương của chúng chia hết cho 6
Chứng minh rằng tổng của hai số tự nhiên bất kì chia hết cho 6 khi và chỉ khi tổng các lập phương của chúng chia hết cho 6
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
CMR: Nếu 2 số TN a và b có tổng chia hết cho 3 thì tổng các lập phương của chúng cũng chia hết cho 3
a ) cmr nếu tổng của 2 số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
b ) Tìm các giá trị của x để biểu thức :
P= (x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó