cmr ta có tỉ lệ thức a/b=c/d nếu có một trong các đẳng thức sau:
a, 2a+b/a-2b=2c+d/c-2d
b, (a+2c)(b-d)=(a-c)(b+2d) giả thiết các tỉ lệ thức đều có nghĩa
Chứng minh ràng nếu ta có tỉ lệ thức \(\frac{a}{b}\)= \(\frac{c}{d}\) nếu có một trong các đẳng thức sau:
a) \(\frac{2a+b}{a-2b}\)= \(\frac{2c+d}{c-2d}\).
b)( a+ 2c)( b- d)=( a- c)( b+ 2d).
( Giả thiết các tỉ lệ thức trên đều có nghĩa).
Cho a/b = c/d ( Giả thiết các tỉ lệ thức đều có nghĩa). Chứng minh a-2c/3a+c = b-2d/3b+d
Bài 7: Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức phải chứng minh đều có nghĩa):
a)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\) b)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\) d)\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
ai hộ mik vs
\(\text{Chứng minh rằng ta có tỉ lệ thức \frac{a}{b}= \frac{c}{d} nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa )}\)\(\text{Chứng minh rằng ta có tỉ lệ thức }\)\(\frac{a}{b}=\frac{c}{d}\)\(\text{ nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa )}\)
\(\left(a+b+c+d\right)\left(a-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\text{MÌNH ĐANG CẦN GẤP LẮM GIẢI GIÚP MÌNH NHA }\)
Cho tỉ lệ thức a/b=c/d . chứng minh rằng ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa) : a) 2a+3b/2a-3b = 2c+3d/2c-3d b) ab/cd= a^2 - b^2/c^2 - d^2 c) (a+b/c+d)^2 = a^2+b^2/c^2+d^2
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa):
a) a+b / a-b = c+d / c-d
b) (a+b+c+d) . (a-b-c+d) = (a-b+c-d) . (a+b-c-d)
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa):
a) a+b / a-b = c+d / c-d
b) (a+b+c+d) . (a-b-c+d) = (a-b+c-d) . (a+b-c-d)
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa) :
a) a+b/a-b = c+d/c-d
b)(a+b+c+d)*(a-b-c-d)=(a-b+c-d)8(a+b-c-d)