1. thực hiện phép tính
a.\(\frac{3+\sqrt{7}}{3-\sqrt{7}}-\frac{3-\sqrt{7}}{3+\sqrt{7}}\)
b,\(\left(\frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}-5}-\frac{\sqrt{2}-5}{\sqrt{2}+5}\right):\frac{\sqrt{2}}{23}\)
c,\(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}+\sqrt{5}\)
d,\(\sqrt{\frac{1}{2}}+\sqrt{4,5}+12,5\)
e, \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\frac{1}{3}}\)
tinh
a. \(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)
b.\(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)
c.\(3\sqrt{50}-2\sqrt{75}-4\frac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\frac{1}{3}}\)
d.\(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)
e.\(\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\frac{6}{2-\sqrt{10}}-\frac{20}{\sqrt{10}}\)
f.\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
CMR
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2013^2-1}+\sqrt{2013^2}}=2012\)
CMR
\(\frac{43}{44}< \frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}< 2\)
1) Tính giá trị biểu thức A = \(\frac{\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\)
2) Cho B = \(\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}\)
a. Tìm ĐKXĐ của B và rút gọn B
b. Tính giá trị biểu thức B khi a = \(1+3\sqrt{2}\) và b = \(10+\frac{11\sqrt{8}}{3}\)
cmr với mọi n thuộc N* \(1+\frac{1}{2\sqrt{2}}+\frac{1}{3\sqrt{3}}+...+\frac{1}{n\sqrt{n}}< 2\sqrt{2}\)
Cho B = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
CMR : B ∉ N
CMR:
Với n thuộc N*
\(a)1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\\ b)\frac{1}{\sqrt{n}}>2\left(\sqrt{n-1}-\sqrt{n}\right)\)