Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le duc minh vuong

CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}< 2\)

Akai Haruma
3 tháng 5 2019 lúc 0:33

Lời giải:
Xét số hạng tổng quát \(\frac{1}{(n+1)\sqrt{n}}\):

\(\frac{1}{(n+1)\sqrt{n}}=\frac{(n+1)-n}{(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}.\sqrt{n(n+1)}}\)

\(< \frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\frac{\sqrt{n+1}+\sqrt{n}}{2}.\sqrt{n(n+1)}}\)

\(\Leftrightarrow \frac{1}{(n+1)\sqrt{n}}< 2.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Cho $n=1,2,....,2004$

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{2005\sqrt{2004}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{2005\sqrt{2004}}< 2(1-\frac{1}{\sqrt{2005}})< 2\) (đpcm)


Các câu hỏi tương tự
na phan
Xem chi tiết
Như Trần
Xem chi tiết
Kim Taehyung
Xem chi tiết
Như Trần
Xem chi tiết
Siêu koll
Xem chi tiết
Natsu Dragneel
Xem chi tiết
Nguyễn Thị Kim chung
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Phương Minh
Xem chi tiết