CM \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2006\sqrt{2005}}< 2\)
1, rút gọn biểu thức:\(A=\sqrt{1+\frac{2}{3}}\sqrt{1+\frac{2}{4}}\sqrt{1+\frac{2}{5}}.....\sqrt{1+\frac{2}{2006}}\)
tính S=\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...\sqrt{1+\frac{1}{2006^2}+\frac{1}{2007^2}}\)
CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}< 2\)
Tính giá trị biểu thức:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+....+\frac{1}{2005\sqrt{2004}+2004\sqrt{2005}}\)
nhờ giúp mk với
1,Rút gọn:
a, \(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+2}\)
b,\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
Trục căn ở mẫu:
\(a)\frac{5}{\sqrt{10}}\\ b)\frac{-2}{1-\sqrt{5}}\\ c)\frac{4}{\sqrt{3}+\sqrt{2}}\\ d)\frac{1}{3-2\sqrt{2}}\\ e)\frac{6-\sqrt{6}}{1-\sqrt{6}}\\ g)\frac{3\sqrt{2}-2\sqrt{3}}{2\left(\sqrt{3}-\sqrt{2}\right)}\\ h)\frac{\sqrt{3}-3}{\sqrt{3}-1}\\ i)\frac{\sqrt{15}}{5\sqrt{3}+3\sqrt{5}}\)
1/ Cho D=\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}\)với 0≤x≤1
a) Rút gọn
b) CMinh 1\(-\sqrt{D+x+1}=\sqrt{x}\)
2/Cho E=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)với x≥0 và x≠1
a) Rút gọn
b) Tìm giá trị của x để E = \(\frac{1}{2}\)
c) So sánh E với \(\frac{2}{3}\)
3/Cho G=\(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)với x≥0,x≠4,x≠9
a) Rút gọn
b) Tìm x để G<1
mọi người giúp em bài này với,em đang cần gấp ạ
bài 2:rút gọn các biểu thức sau
a)A=\(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\)
b)B=\(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
c)C=\(\left(1+\frac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(\frac{11+\sqrt{11}}{1+\sqrt{11}}+1\right)\)
d)D=\(\frac{\sqrt{2}}{\sqrt{2}-\sqrt{3}}-\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
e)E=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)