CMR: số được thành lập bởi 3n chữ số giống nhau thì chia hết cho 3n với n là số nguyên dương.
Nói cách khác : aaaaaaaaaa..........aaaaaaaa chia hết cho 3n
(n số a)
CMR: Với mọi số nguyên dương n thì :
a)A=3n+3+3n+1+2n+2+2n+1 chia hết cho 6
b)B=3n+3-2n+3+3n+2-2n+1 chia hết cho 10
(nghiêm cấm hành vi làm đc câu 1 câu 2 viết tương tự xin cảm ơn)
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
Chứng minh rằng : Với mọi số nguyên dương n thì 3n+2 – 2n+2 +3n -2n chia hết cho 10
1.từ số 1 - 100 có bao nhiêu chữ số chia hết cho 2 nhưng ko chia hết cho 5
2.số tự nhiên nhỏ nhất có 6 chữ số chia hết cho 9 là
3.tập hợp các số có 2 chữ số là ước của 60 là
4.tìm số tự nhiên n để 3n + 5 chia hết cho n
5.lập các số có 3 chữ số khác nhau chia hết cho 3 mà ko chia hết cho 3 từ các số 0;4;5;6.
số lớn nhất trong các số lập được là số nào
6.chỗ (xo ;yo) là các số nguyên dương thỏa mãn( x - 2 ) (2y - 3) = 26 . khi đó x0 + y0 =
7.số nguyên tố nhỏ nhất có dạng aa3
8.tìm số tự nhiên n sao cho p = (n -2 ) (n2 + n -1 ) là số nguyên tố
9.số tự nhiên nhỏ nhất có 6 chữ số khác nhau chia hết cho 3 và 5
Chứng minh rằng : \(3^{3n+2}\)+\(5.2^{3n+1}\)chia hết cho 19, với mọi n là số nguyên dương.
Bài 1 : Cho A=\(n^2\)- n với n là số nguyên tố lớn hơn 3. Chứng minh A chia hết cho 24
Bài 2 : a) Cho A=\(n^3-n^2+3n-3\)với n là số nguyên dương. Tìm n để A là số nguyên tố
b) Cho 9 số nguyên dương a1,a2,....,a9 đôi một khác nhau ( nghĩa là ko có số nào giống nhau )và có tổng bằng 220. Chứng minh trong 9 số đó tồn tại 4 số có tổng lớn hơn hoặc bằng 110