1.CMR:
a) Cho a, b, c là các số nguyên dương
\(1<\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<2\)
b) \(S3=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{10^2+11^2}<\frac{9}{20}\)
Chứng minh rằng (1/5+1/13+1/25+...+1/10^2+11^2)<9/20
CMR:
1/5 + 1/13 + 1/25 + .... + 1/102 + 112 < 9/10
\(\dfrac{1}{5}\)+\(\dfrac{1}{13}\)+\(\dfrac{1}{25}\)+...+\(\dfrac{1}{10^2}\)+\(\dfrac{1}{11^2}\)< \(\dfrac{9}{20}\)
Chứng tỏ rằng biểu thức trên bé hơn 9/20
chứng tỏ rằng :
1/5 + 1/13 + 1/25 +...+ 1/10^2 + 11^2 < 9/20
Tính 1) 4/5 +13/18 2) 3/7 -11/8 3) -7/10 - -4/5 4) 3/20 -1/25 5) 2/3 - 5/6 6) 1/4 + -3/8 - 19/10 7) -9/10 - -7/18 8) 3/10 - 11/18 9) 3/5 -5/6 + -7/12 10) -4/9 - (-5 )/6 - 3/8
4.24.5^2-(3^3.18+3^3.12)
31.15.7^2.4-31.49.40
1+2+3+4+5+6+7+8+9+10
1+3+5+7+9+11+13+15+19
2+6+10+14+22+23+26+34
5+8+11+14+17+20+23+26+29
1+6+11+16+21+26+31+36+41+47+51
10+13+16+19+22+25+28+31+34+37+40
5+7+9+11+13+15+17+3+8+13+18+23+28
4+7+10+13+16+19+5+9+13+17+21+25
Chứng minh
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....+\frac{1}{10^2+11^2}<\frac{9}{20}\)
Chứng tỏ rằng:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....+\frac{1}{10^2+11^2}<\frac{9}{20}\)