Cho x, y, z là các số khác không. CMR:
Nếu \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
chứng minh nếu x+y+z=-3 thì:
(x+1)^3+(y+1^3)+(z+1)^3=3(x+1)(y+1)(z+1)
CMR: Nếu x3+y3+z3=3xyz thì 1/x3 + 1/y3 + 1/z3 = 3/xyz
cho 3 số thực x,y,z thỏa mãn x+y+z = 3 và 1/x+1/y+1/z = 1/3
CMR có ít nhất 1 trong 3 số x,y,z = 3
Cho x,y,z>0 thỏa mãn x+y+z=1. CMR: x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=1
Cho (x+y+z)^2= x^2+y^2+z^2 CMR: 1/x^3+1/y^3+1/z^3= 3/xyz
Cho x#y#z#1 va x3=3*x-1, y3=3*y-1, z3=3*z-1. Cmr, x2+y2+z2=6
CMR : Nếu x + y + z = 1 thì x2 + y2 + z2 >= 1/3
Cho (x+y+z)^2= x^2+y^2+z^2 CMR: 1/x^3+1/y^3+1/z^3= 3/xyz