Giả sử nếu a không phải là số chính phương thì\(\sqrt{a}\) là số hữu tỉ
\(\Rightarrow\sqrt{a}=\frac{m}{n}\) \(\left(m;n\right)=1\)
Do a không phải là số chính phương nên\(\frac{m}{n}\notin N\)
\(\Rightarrow n>1\)
\(\Rightarrow m^2=n^2.a\)
gọi P là ước nguyên tố nào đó của n
\(m^2\)chia hết cho a ; \(n^2\)chia hết cho a (trái với điều kiện ở trên là m và n nguyên tố cùng nhau)
Vậy nếu a không phải là số chính phương thì\(\sqrt{a}\) là số vô tỉ