Tìm 4 số nguyên tố liên tiếp và tăng dần p1 < p2 < p3 < p4 sao cho số q = p1 + p2 + p3 + p4 cũng là một số nguyên tố.
cho p1,p2,p3,p4,p...p8 là các số nguyên tố
sao cho p1^2+p2^2+p3^2+...+p7^2=p8^2
cho p1,p2,p3,p4,p...p8 là các số nguyên tố
sao cho p1^2+p2^2+p3^2+...+p7^2=p8^2
Cho số tự nhiên N=p1.p2^2.p3^3.p4^4, trong đó p1, p2, p3, p4 là các số nguyên tố đôi một khác nhau. Số các ước số của N là?
CMR: mọi số nguyên tố lớn hơn 3 đều có dạng 3k+1 hoặc 3k+2.
CMR: Nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 lầ hợp số.
Giải chi tiết ra giùm mik nha!!!
chứng minh rằng nếu p và p^2 +2 đều là các số nguyên tố thì p^3+2 cũng là các số nguyên tố
chứng minh rằng nếu p và p^2 +2 đều là các số nguyên tố thì p^3+2 cũng là các số nguyên tố
CMR nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số .