Ta có
abcd = 1000a+100b+10c+d=(1000a+96b+8c)+(4b+2c+d)
Ta có 1000a+96b+8d chia hết cho 8
Theo đề bài 4b+2c+d cũng chia hết cho 8
=> abcd chia hết cho8
Ta có
abcd = 1000a+100b+10c+d=(1000a+96b+8c)+(4b+2c+d)
Ta có 1000a+96b+8d chia hết cho 8
Theo đề bài 4b+2c+d cũng chia hết cho 8
=> abcd chia hết cho8
CMR: (d+2c+4b)chia hết cho 8 thì abcd chia hết cho 8
Bài 1 : Chứng tỏ rằng :
a, Nếu ( d + 2c ) chia hết cho 4 thì abcd chia hết cho 4
b, Nếu ( d + 2c +4b ) chia hết cho 8 thì abcd chia hết cho 8
Cho mình hỏi 2 ý cuối nha :
Bài 1 : Chứng tỏ rằng :
a, Nếu ( d + 2c ) chia hết cho 4 thì abcd chia hết cho 4
b, Nếu ( d + 2c + 4b ) chia hết cho 8 thì abcd chia hết cho 8
*Ai đúng mình like cho*
CMR nếu (d+2c+4d)chia hết cho 8 thì abcd chia hết cho 8
Nếu được thì ác bạn giúp mình nha >.< Ai nhanh và đúng mình like cho nhé.
Chứng tỏ rằng ;
a, Số tự nhiên có dạng aaaaaa luôn chia hết cho 1001
b, ( abc - cba ) chia hết cho 99
c, Nếu ( d + 2c ) chia hết cho 4 thì abcd chia hết cho 4
d, Nếu ( d + 2c + 4b ) chia hết cho 8 thì abcd chia hết cho 8
Chứng minh rằng nếu d+2c+4b chia hết cho 8 thì abcd chia hết cho 8
Chứng minh rằng:nếu (d+2c+4b)chia hết cho 8 thì abcd chia hết cho 8
CM nếu(d+2c+4b)chia hết 8 thì abcd chia hết 8
a, Cho p và p + 4 là các số nguyên tố(p>3). Chứng minh rằng p+8 là hợp số .
b, Chứng minh rằng nếu (d+2c+4b) chia hết cho 8 thì abcd thì chia hết cho 8