cho a,b,c > 0 cmr: \(\frac{b^2a}{a^3\left(b+c\right)}+\frac{c^2a}{b^3\left(c+a\right)}+\frac{a^2b}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho \(P=\frac{a^3-a-2b-\frac{b^2}{a}}{\left(1-\sqrt{\frac{1}{a}+\frac{b}{a^2}}\right)\left(a+\sqrt{a+b}\right)}:\left(\frac{a^3+a^2+ab+a^2b}{a^2-b^2}+\frac{b}{a-b}\right)\)
a) CMR: \(P=a-b\)
b) Tìm a, b biết P=1 và \(a^3-b^3=7\)
\(P=\frac{a^3-a-2b-\frac{b^2}{a}}{\left(1-\sqrt{\frac{1}{a}+\frac{b}{a^2}}\right)\left(a+\sqrt{a+b}\right)}:\left(\frac{a^3+a^2+ab+a^2b}{a^2-b^2}+\frac{b}{a-b}\right)\)với a,b>0,a\(\ne\)b,a+b\(\ne\)a^2
CMR P=a-b
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm a^2+b^2+c^2 bé hơn hoặc bằng abc. Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm a+b+c<=3. Cmr \(\frac{ab}{\sqrt{3+c}}+\frac{bc}{\sqrt{3+a}}+\frac{ca}{\sqrt{3+b}}\le\frac{3}{2}\)
4) Cho a,b,c>0 tm a+b+c=2. Cmr \(\frac{a}{\sqrt{4a+3bc}}+\frac{b}{\sqrt{4b+3ca}}+\frac{c}{\sqrt{4c+3ab}}\le1\)
5) Cho a,b,c>0. Cmr \(\sqrt{\frac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\frac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\frac{c^3}{5c^2+\left(a+b\right)^2}}\le\sqrt{\frac{a+b+c}{3}}\)
6) Cho a,b,c>0. Cmr \(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\frac{1}{3}\)
Giúp mình với nhé các bạn
Cho a,b,c>0 và abc=1. CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
Cho a,b,c là các số thực 0<a,b,c<1 và ab+bc+ca=1
CMR:\(\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\ge\sqrt{3}-2\)
Tính giá trị của biểu thức:
P=\(\frac{\frac{\frac{a^3-a-2b-\frac{b^2}{a}}{\left(1-\sqrt{\frac{1}{a}+\frac{b}{a^2}}\right).\left(a+\sqrt{a+b}\right)}}{a^3+a^2+ab+a^2b}}{a^2-b^2}+\frac{b}{a-b}\)
Với a=23, b=22
Cho a,b,c là độ dài 3 cạnh của tam giác thỏa mãn:
\(a^2+b^2+c^2=\frac{1}{9}\)
CMR \(S=\left(2b\:+2c\:-a\right)^3+\left(2c\:+2a-b\right)^3\:+\left(2a\:+2b\:-c\right)^3\ge\frac{1}{\sqrt{3}}\)
cho a;b;c là 3 số dương. CMR:
\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\ge\frac{3}{2}\left(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\right)\)