Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn thị thảo vân

cmr nếu: a>0,b>0,c>0    thì: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Nguyễn Tuấn
11 tháng 2 2016 lúc 20:07

Đặt b + c = x ; c + a = y ; a + b = z 
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2 
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z 
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3) 

Áp dụng BĐT A/B + B/A ≥ 0 hoặc Cô-si cũng được 
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm) 

Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c 

Nguyễn Tuấn
11 tháng 2 2016 lúc 20:23

P = a/(b+c) + b/(c+a) + c/(a+b) 
P + 3 = 1+ a/(b+c) + 1+ b/(c+a) + 1+ c/(a+b) 
P + 3 = (a+b+c)/(b+c) + (a+b+c)/(b+c) + (a+b+c)/(c+a) 
P + 3 = (a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] (*) 

ad bđt cô si cho 3 số: 
2(a+b+c) = (a+b) + (b+c) + (c+a) ≥ 3.³√(a+b)(b+c)(c+a) 
1/(b+c) + 1/(c+a) + 1/(a+b) ≥ 3.³√1/(a+b)(b+c)(c+a) 

nhân lại vế theo vế 2 bđt: 2(a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] ≥ 9 
=> P + 3 ≥ 9/2 => P ≥ 3/2 (đpcm) ; dấu "=" khi a = b = c 
- - - 
cách khác: P = a/(b+c) + b/(c+a) + c/(a+b) 
M = b/(b+c) + c/(c+a) + a/(a+b) 
N = c/(b+c) + a/(c+a) + b/(a+b) 

Thấy: M + N = 3 
P + M = (a+b)/(b+c) + (b+c)/(c+a) + (c+a)/(a+b) ≥ 3 (cô si cho 3 số) 
P + N = (a+c)/(b+c) + (b+a)/(c+a) + (c+b)/(a+b) ≥ 3 (cô si) 

=> 2P + M + N ≥ 6 => 2P + 3 ≥ 6 => P ≥ 3/2 (đpcm) ; đẳng thức khi a = b = c
-------------- 
b) ad bđt Bunhia: 1² = [2.(2x) + 1.y]² ≤ (2²+1²)(4x²+y²) => 4x² + y² ≥ 1/5 (đpcm) 
dấu "=" khi 2x/2 = y/1 và 4x+y = 1 <=> x = y = 1/5 
- - - 
Có thể không cần Bunhia, ad bđt a² + b² ≥ 2ab (*) 
(*) quá hiển nhiên từ (a-b)² ≥ 0 
x² + 1/25 ≥ 2x/5 <=> 4x² ≥ 8x/5 - 4/25 (1*) 
y² + 1/25 ≥ 2y/5 <=> y² ≥ 2y/5 - 1/25 (2*) 

lấy (1*)+(2*) => 4x²+y² ≥ 8x/5+2y/5 - 4/25 - 1/25 = 2(4x+y)/5 - 5/25 = 1/5 (đpcm) 
dấu "=" khi x = y = 1/5 


Các câu hỏi tương tự
Thắng Nguyễn
Xem chi tiết
Thanh Tâm
Xem chi tiết
Pham Hoàng Lâm
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
LIVERPOOL
Xem chi tiết
Huỳnh Xuân Mai
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Võ Anh Nguyên
Xem chi tiết
Min
Xem chi tiết