Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

CMR nếu 2(x+y)=5(y+z)=3(z+x) thì \(\frac{x-y}{4}=\frac{y-z}{5}\)

Tung Duong
7 tháng 2 2019 lúc 11:40

Vì 5(y+z) = 3(x+z)

Suy ra (x+z) / 5 = (y+z) / 3 = (x+z-y-z) / 5-3 = (x-y) / 2

Suy ra (x+z) / 5 = (x-y) / 2 tương đương (x+z) / 10 = (x-y) / 4                               (1)

2(x+y) = 3(x+z)

Suy ra (x+z) / 2 = (x+y) / 3 = (x+z-x-y) / 2-3 = y-z

(x+z) / 2 = y-z

Tương đương (x+z) / 10 = (y-z) / 5                                                                      (2)

Từ (1) và (2) suy ra:

 \frac{(x - y)}{4}=\frac{(y-z)}{5}

zZz Cool Kid_new zZz
7 tháng 2 2019 lúc 21:53

Cop mạng ghi nguồn đầy đủ vào nhé!

Ta có:  \(2\left(x+y\right)=3\left(z+x\right)\)

\(\Rightarrow\frac{x+y}{3}=\frac{z+x}{2}\)

\(=\frac{x+y-\left(z+x\right)}{3-2}=y-z\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{x+z}{2}=y-z\)

\(\Rightarrow\frac{x+z}{10}=\frac{y-z}{5}\left(1\right)\)

Lại có:\(5\left(y+z\right)=3\left(x+z\right)\)

\(\Rightarrow\frac{y+z}{3}=\frac{x+z}{5}\)

\(=\frac{z+x-\left(y+z\right)}{5-3}=\frac{x-y}{2}\)

\(\Rightarrow\frac{x+z}{5}=\frac{x-y}{2}\)

\(\Rightarrow\frac{x+z}{10}=\frac{x-y}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)


Các câu hỏi tương tự
Nguyễn Quang Tùng
Xem chi tiết
The darksied
Xem chi tiết
Xem chi tiết
Có Anh Đây
Xem chi tiết
luong long
Xem chi tiết
Nguyễn Trúc Quỳnh
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Đặng Chi
Xem chi tiết
Hà Xuân Hoàng
Xem chi tiết