Ta có :
\(n^3-13n=\left(n^3-n\right)-12n\)
\(=n\left(n^2-1\right)-6.\left(2n\right)\)
\(=n\left(n-1\right)\left(n+1\right)-6\left(2n\right)\)
\(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3; hay chia hết cho 6.
Mà \(6\left(2n\right)\) chia hết cho 6
\(\Rightarrow n\left(n-1\right)\left(n+1\right)-6\left(2n\right)\)chia hết cho 6
Do đó \(n^3-13n\)chia hết cho 6.
\(A=n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)
Ta có:
\(n\left(n-1\right)\left(n+1\right)\)chia hết cho 6.
\(12n\)chia hết cho 6.
\(\Rightarrow n\left(n-1\right)\left(n+1\right)-12n\)chia hết cho 6
Hay \(n^3-13n\)chia hết cho 6.