(n+1)(n+2)(n+3)....2n ( 1 )
Dễ thấy ( 1 ) đúng với n = 2
giả sử bất đẳng thức đúng với n = k nghĩa là (k+1)(k+2)(k+3)...2k > 2k
Ta chứng minh BĐT đúng với n = k+1
\(\Rightarrow\)( k + 2 )(k+3)(k+4)...2(k+1) > 2k+1
Thật vậy, theo giả thiết quy nạp,ta có :
(k+1)(k+2)(k+3)...2k > 2k
\(\Rightarrow\)(k+1)(k+2)(k+3)...2k(2k+1) > 2k
\(\Rightarrow\)2(k+1)(k+2)(k+3)...2k(2k+1) > 2k+1
\(\Rightarrow\)(k+2)(k+3)...2k(2k+1)(2k+2) > 2k+1
Vậy BĐT ( 1 ) đúng với mọi n > 1 hay .....